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Domain formation in ordered alloys has been studied from the group-theoretical point of view. A 
method is derived to determine the number of orientation variants as well as the number of translation 
variants from the point groups and lattices of the ordered and disordered structures. The number of 
orientation variants is found to be equal to the order of the point group of the disordered phase divided 
by that of the ordered phase. It has been shown that under certain conditions the set of operations 
that produce all variants from a given original variant can be chosen so as to form a group. The opera- 
tions relating the orientation variants are the elements of this group called the variant generath~g group. 
The results of the theory derived in this paper are general and can be applied to any disorder-order 
transformation. A few examples are worked out explicitly to illustrate the different theorems. 

Introduction 

The study of the substructure of ordered alloys has been 
the subject of numerous papers, especially since 
electron-microscopic methods have become available 
to observe directly the different structural variants. 
However, most of these papers are concerned with 
'case studies' of particular alloys. It would therefore be 
of interest to have some guiding principles for such 
studies that would allow the derivation of the number 
of variants; translation variants and orientation var- 
iants as well the set of operations that relate these 
variants one to the other. A similar problem exists in 
relation to the domain structure of ferroelectrics and 
magnetics and a number of papers have been devoted 
to the subject, (Aizu, 1966, 1967, 1969, 1970). We 
shall follow a somewhat similar line of reasoning to 
that used by Aizu (1970). 

Somewhat related work, although with a quite 
different purpose, was done by Altmann (1963a, b), who 
decomposed the point groups into semi-direct products 
and by Melvin (1956) who introduced the weak direct 
product for this purpose. 

In order to make the paper more readable we have 
repeated some of the elementary concepts of group 
theory. More background informations may be found 
e.g., in books by Janssen & Boon (1967), Boerner 
(1969), and Buerger (1963). 

1. Symmetry  considerations - notations 

Domain formation is clearly a consequence of the fact 
that on going through the disorder-order transforma- 
tion different variants of the ordered phase have equal 
probability of being generated if their structures are 
related by a symmetry operation of the disordered 
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matrix, which is not a symmetry operation of the 
ordered phase. 

We shall introduce the following notations: The 
point group of the disordered parent phase will be rep- 
resented by G, of order p with elements gj. 

We shall assume that the ordered structure is a 
superstructure, i.e. the same atomic sites as those pre- 
sent in the disordered structure are also occupied in the 
ordered structure. However, whereas they were occu- 
pied at random by the different atomic species in the 
disordered phase, they will be occupied by well-defined 
atoms in the ordered phase. The small changes in the 
lattice that accompany ordering will be ignored since 
they are unimportant in determining the number of 
variants. We shall afterwards generalize our considera- 
tions to other situations. 

The ordering is usually accompanied by a decrease 
in symmetry in such a way that the point group of the 
ordered structure H of order q is a subgroup of G, 
i.e. H c G .  We shall further call G~ and Ht the point 
groups of the lattices of the disordered and ordered 
structures respectively. We then have G cG~ and 
H c  Hz, i.e. the symmetry of the structure may be lower 
than that of the lattice, as well for the ordered as for 
the disordered structure. The lattice translations of the 
parent phase will be represented by the group T, 
whereas those of the ordered lattice will be represented 
by T (°) according to our assumptions T (°) ~ T. 

The structure of the different variants will be denoted 
by Vj and their point group by H~; the Hj can only 
differ in the orientation of their elements. It is clear 
that as well the structures as the point groups are 
related by operations of G which are not elements of 
H. Let e.g. gV~=Vj with g~G but g¢H~ then H j =  
gHtg -1, i.e. the point groups of the different variants 
are conjugate in G. 

If for all g~G, Hj = H, the subgroup H is invariant 
in G. This is often not the case, moreover the configu- 
ration of the elements of H, can mostly adopt different 
orientations with respect to the elements of G. 
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Generally more than one operation transforms a 
given variant V~ into another given variant Vi. It is 
shown easily that if g is an operation such that gVi = 
V j, the complete set is given by gHi  or H ig. 

2. Decomposition of G into cosets 

Let gVl = Vj then we have just shown that the complete 
set of operations that transforms Vi into Vj is given by 
gH~ (or H~g). Similarly the complete set of operations 
that transforms Vl into Vk is given by f i l l  (or H k f )  if 
fV~ =Vk. 

The sets g i l l  and f H ~  have no element in common 
for if they had, this common element would have to 
transform V~ into two different variants which is 
clearly impossible. 

We can now construct the sets of operations that 
transform an arbitrarily chosen original variant, say 
Vl, respectively into all other variants. Let gjVl=Vj 
then in particular g~ = E (identity operation) and we 
obtain the following sets: 

glHl ,g2Hi ,  . . . ,g jHi ,  . • . ,g~Hi . 

We note that: 
(i) all elements in each set are elements of G since 

they consist of products of elements of G. 
(ii) two sets have not elements in common as was 

shown above, i.e. each set contains q different elements 
of G, which differ from those in any other set. 

(iii) we can continue to construct sets until n q = p  
because then we have used all elements of G. 

We conclude that we can write down G as the set- 
theoretic sum: 

G = g l H l  +g2Hl + • • • + g ,  H t ,  

where the gj are not elements of H~ (except g~ = E). 
This leads immediately to the well-known theorem of 
Lagrange which in our  case has a particularly simple 
geometrical interpretation. 

We have in fact developed G into cosets of Hi and 
each coset represents the complete set of operations 
leading from a given variant Vi to another given variant 
from the set V1, • •. ,  V,. 

We can conclude that: 
(i) The number of variants is given by n = p/q. 
(ii) The set of operations that generates all variants 

can be obtained by taking one operation from each 
coset in the development of G into cosets of H. 

3. The variant generating group 

It is clear that there are a large number of different 
ways of choosing the variant generating set; there are, 
in fact, qn ways of selecting n elements by selecting one 
out of each coset of q elements. Some of these variant 
generating sets will form a group which we shall call V, 
the variant generating group (V.G.G.). Other sets will 
not form a group; in some cases it will not be possible 
to select a set forming a group. Clearly it is of interest 

to represent the variant generating operations as a 
group whenever possible, since the properties of 
groups can then be made use of; in particular the closure 
property. 

We shall therefore investigate under what circum- 
stances aV.G.G, can be found. We make use here of the 
following theorem: If a group G has two subgroups H 
and V which only have the unit element in common 
then each coset (left or right) of H in G contains at 
most one element of V. If moreover the product of the 
orders of the subgroups H and V, respectively q and n, 
is equal to the order of the group G, the statement can 
be made more stringent; each coset of H in G now 
contains one and only one element o f  V. 

We can summarize these statements now somewhat 
differently: let G be decomposed into cosets of H; we 
then have a number of cosets equal to p/q .  If we can 
find a subgroup V of G of order n = p/q which has no 
element in common with H other than the unit element, 
then we know that each of the cosets will contain one 
and only one of the elements of the group V. The 
group V then clearly qualifies as a V.G.G. So, /f a 
V.G.G. V exists we can always develop G into cosets 
of H in such a way that the 'coefficients' in the develop- 
ment are the elements of V. If H is an invariant sub- 
group of G the factor group G / H  constitutes a repre- 
sentation of the V.G.G. V (if it exists). 

From the development of G: 

G = v l H +  v 2 H + . . ,  vnH 

where the vj are the elements of a group V, it follows 
immediately that G can be written as a product of two 
groups G =  V . H = H .  V. This can also be shown di- 
rectly as follows: 

(i) Each product vihz is an element of G 
(ii) All products are different 
(iii) The set of products v,h, contains nq = p different 

elements of G and is therefore G itself. 
(iv) The same reasoning applies to the product h~v, 

and therefore the multiplication is commutative. 
The multiplication of individual elements is not 

commutative however, and therefore multiplying out 
H .  V and V. H will lead to the same set of elements 
but they will be generated in a different order. 

The product V. H is the so-called weak direct pro- 
duct (Melvin, 1956) of the groups V and H, where the 
term weak indicates that the products of the elements 
of the groups V and H need not be commutative. 

If one of the two groups H or V, say H, is invariant, 
G may be written as the semi-direct product G = HAg, 
where the convention is made that the invariant sub- 
group is written first since the multiplication of indi- 
vidual elements is still not commutative. Such products 
have been studied by Altmann (1963a, b). 

If both H and V are invariant, then G is called the 
direct product of H and V; G = H x V. In this case also 
the multiplication of the individual elements is com- 
mutative. Neither of these products has any particular 
significance for our purpose however. 
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4. Uniqueness theorem 

For a given group H usually more than one group can 
be found that qualifies as a V.G.G. Let Vand V' be two 
such groups which are both subgroups of G, have no 
element in common with H and are of the order n = 
p/q, then it is easy to show that V and V' generate the 
same set of variants, although by making use of dif- 
ferent operations of G. As a result of this theorem it is 
sufficient to find one V.G.G. for a given G and H 
group, since all the others are equivalent, i.e. lead to 
the same set of variants. Since V and V' produce the 
same set of variants we can always write the decompo- 
sition of G in such a way that the cosets having coeffi- 
cients with the same index generate the same variants, 
e.g. in 

G = vxH+ v2H+ . . .  -k vnH--  v£H+ v ; H + . . .  + v~H 

v~H and v; H generate the same variant. Moreover we 
know that in both expansions each element of G, 
written as a product v~h or v~h has to occur once and 
only once. 

5. Reciprocity theorem 

The relationship between the groups H and Vin G, i.e. 
G =  H .  V-- V. H, is symmetrical. It is therefore clear 
that the H group plays the role of the V.G.G. if the V 
group is the point group of the ordered phase, i.e. G 
can be decomposed according to two essentially differ- 
ent schemes: 

G = VlHi + v2Hi + .  • • -k v,,H~ = hi Vi + h2 Vi + .  • • -t- h~ Vl • 

The reciprocity principle can be used to shorten the 
labour in establishing the table of V.G.G.'s for the 32 
point groups and all their subgroups (see Appendix). 

6. Relations between V and H 

We shall make use of the fact that two groups M and 
M '  related by a relation of the type 

M '  = p - X M p  , 

where p is an arbitrary operation not necessarily be- 
longing to M, are isomorphic. 

Very often the group H can adopt several configura' 
tions within the same group G. This will for instance be 
the case if there exists an operation p that transforms 
G into itself without p being an element of G. Such ope- 
rations are, e.g., a rotation over an odd number of 
times 45 ° about the fourfold axis in the point group 
4/rn 2/m 2/rn or a rotation over an odd number of times 
30 ° about the sixfold axis in the group 6/m2/rn2/m. 

Such an operation interchanges the two classes of' 
twofold axis as well as the two classes of vertical mir- 
rors occuring in these point groups. If we ignore for the 
moment the distinction between these two different 
classes of symmetry elements of the same type we can 

say tha tp  transforms G into itself, i.e. G = p - l G p .  Such 
an operation p will in general transform the subgroup 
H into a different subgroup H '  such that H'  =p- IHp .  
The V.G.G.'s V and V' corresponding respectively to 
H and H '  are then related in the same manner, i.e. 
V' = p -  ~ Vp. To prove this it is sufficient to demonstrate 
that if the two subgroups V and H have no element in 
common except E, the product of their orders being 
equal to the order of G, this is also the case for V' and 
H' .  This follows immediately from the fact that V and 
V' as well as H and H '  are isomorphic. 

It is true that also 

V.  H = G = p - I G p = p - ~ ( V .  H ) P = p - ~ V p p - J H p  
= V ' . H '  

which shows that V' is indeed the V.G.G. correspond- 
ing to H '  in G. However since p is not an operation of 
G the two positions of H, H and H',  are not crystallo- 
graphically equivalent and either one or the other will 
occur in a given physical situation but never both 
simultaneously. In our derivation of all possible sub- 
groups (Appendix) we have a priori to consider the two 
cases as different. However, we have now shown that 
if V undergoes the same transformation as H we obtain 
the V group belonging to the transformed H group. 
This remark allows us to limit ourselves to one configu- 
ration of H in G. 

The reasoning used above holds afortiori  i f  p is an 
element of G, g because then g-~Gg=G,  even when 
making the distinction between different classes of 
similar elements. I fp  is an element of H, e.g. p =- h (and 
therefore not of V), one has H '  = H and hence with one 
H group different V.G.G.'s may correspond; they are 
given by V ' = h - I V h  and are different representations 
of the same V.G.G. However, p may also be an element 
of V and thus no element of H, e.g. p--  v; then we have 
V ' =  V but H ' = v - ~ H v ,  i.e. with one V group now 
different H groups correspond. These different H 
groups are in fact the point groups of the different 
variants. If  Vj= v V~ then Hj =v-~H~v as shown before. 

It is clear that the relations V ' = h - ~ V h  and H ' =  
v-XHv can be derived one from the other by means of 
the reciprocity theorem. 

I f  V is an invariant subgroup of G, we have g-1Vg 
= V  and in particular h - I V h =  V, i.e. only one V 
group is generated in this way. However, other V 
groups can be generated by multiplying the elements of 
V by an element of H; in general one will have to use 
different elements of H for different elements of V in 
order to generate a new group, if it exists. The conclu- 
sions of this paragraph can be summarized as follows" 

(i) If H can occur in G in several configurations not 
related by operations of G, then the corresponding V 
groups are related by the same operations, i.e. from 
H ' = p - l H p  follows V ' = p - l V p  even if pq~G but 
.p- lGp=G. 

(ii) Different representations of the V.G.G. belong- 
ing to a given H group can be derived from one of them, 
V, by the relation V' = h -  ~ Vh. 
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(iii) Different H groups leading to the same V group 
can be derived from one of them by means of the rela- 
tion 

H ' = v - X H v .  

(iv) The pointgroups of the different variants can 
be derived from one of them, Hi, by the relation 

H j  ~ i ) -  1Hi1) . 

7. Variant generating sets 

It is not always possible to find a point group that rep- 
resents all the operations of the set V, even though H 
is an invariant subgroup. The simplest way to prove 
this statement is to present an example. 

Let G be the pointgroup 4 and H the point group 2. 
The elements of G are (E, C~, C 2, C a) and the elements 
of H (E, C]). H is an invariant subgroup of G. One can 
decompose G as follows 

G=(E,  C~) + CI(E, Ca) 
o r  

a = ( E ,  C~) + C~(E, C~) . 

The set V is (E, Ca) or (E, C]) and it is clear that none 
of these forms a group. The reciprocity principle is 
clearly not applicable in such cases since the V group 
does not exist. In cases where a V.G.G. exists, it is also 
possible to find variant generating sets. One can con- 
struct such sets by multiplying the group V with ele- 
ments of H, i.e. V ' = h V =  Vh. The V' are now not 
groups. They nevertheless generate the same set of vari- 
ants as the groups: multiplying by an element H, which 
is a symmetry operation for the variant, does not 
change the resulting structure. In many cases one can 
also generate other groups from a given group (see § 3). 

8. Crystallographically different interfaces 

We shall say that the interface Iij between Vi and Vj is 
crystallographically equivalent with the interface Ikt 
between Vk and V~ if Vk is derived from Vi by means of 
the same, or equivalent, operation as V~ is derived 
from Vj. We shall associate an operation of the V.G.G. 
with each interface. 

Let V,, = v,V0 when V0 is an arbitrary chosen original 
variant then V~ = v,V0 = v~v~ 1Vk = vqVk. The interface 
between Vt and Vk is then characterized by the opera- 
tor vq, which is in fact the operator that transforms the 
structure Vk into V~; the point groups are then related 
by Ill = v~ IHkVq. Similarly one can associate the opera- 
tion vp with the interfaces between Vj and V~Vj = vpV~; 
the relation between the point groups is then H i =  
v;1Hivp. 

According to our definition two interfaces are 
crystallographically equivalent if v~ and vp are trans- 
formed one into the other by a symmetry operation of' 
the group G, i.e. if 

vp = g -  ~v~g . 

This follows immediately by expressing the relation 
between V, and V~ in two different ways: 

Vl = vqgVi and Vl =gvpV~ 

which leads to 

g y p  --~ Vqg o r  1)p = g -  11)qg . 

This relation means that vp and vq are conjugate or are 
transformed one into the other by means of an opera- 
tion of G. Conversely different interfaces correspond 
to operations of V which are not conjugate. 

Translation variants 

We shall now discuss the consequences of translation 
symmetry and look for the number of different ways 
the superstructure can be built in a parallel orientation 
within a given orientation variant of the structure. We 
shall call these translation variants. 

More quantitatively if the symmetry operation g that 
transforms one variant into another, and for which we 
have g~G is such that g¢H, one can still have either 
g~H~ or g(~H~. In the first hypothesis the lattices are 
parallel, this is the case we are considering now. 

The number of different translation variants for a 
given orientation variant is given by the number of 
translation vectors ~ such that ~ T  but "c(sT ¢°). (If 
x~T we have a stacking fault). It is clear that all essen- 
tially different ~ vectors are those leading from the 
origin of a primitive unit cell of the superstructure to 
lattice points of T located within or in the side faces of 
this superlattice unit cell. These vectors are not neces- 
sarily the shortest; however one can always add a lattice 
vector of T to ~ in order to obtain the shortest equiv- 
alent ~ vector. 

The number of • vectors is hence equal to the number 
of lattice nodes of T, within a primitive unit cell of 
T ~°~. This number can be obtained by dividing the 
volume of the primitive unit cell of the superlattice by 
the volume of the primitive unit cell of the disordered 
structure, ignoring small changes in dimensions due to 
ordering. (If the unit cells are not primitive one should 
divide by their multiplicity, e.g. by four for an f.c.c. 
cell and two for a b.c.c, cell.) Let the quotient be t; the 
total number of variants is then (ml/mz)t where ml 
and m2 are the multiplicities of disordered and ordered 
structures respectively. 

A somewhat more elegant way of formulating the 
same result is based on the transformation matrix M 
from the primitive base of the disordered structure 
(dt,dz,d3) to the primitive base of the ordered structure 
(al.o,a,.o,63.o). 

One has: 

a2, = M 62 
63. 6 3 .  

The volumes V and Vo respectively of the primitive unit 
cell of the disordered and the ordered structures are 
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given by 

Vo = (al.o x da. o). a3.o and V= (all x a2). aa 

which leads to 
Vo=IMIV 

where IMI is the determinant value of the matrix M. 
According to the foregoing discussion we can also 
write: 

t=lMI . 

If the unit cells are not primitive the same correction 
factors as discussed above should be applied. 

Applications 

The results obtained above were derived with a specific 
model in mind, the ordering of a substitutional alloy 
on a superlattice. However, the derivation is in fact not 
specifically based on this model and it is therefore of 
more general validity. It can be applied directly to the 
case of a structure resulting from the ordering of 
structural vacancies, as for instance in pyrrhotite (Van 
Landuyt & Amelinckx, 1972) or fl-indium sulphide (Van 

c'~ 

C"' ' 

m" (42 ) 
Fig. 1. Stereographic projection of the pointgroup G m 

of the NiMo lattice. 

(a) (b) 

Fig. 2. Stereogram illustrating the two orientations of H(222) 

within G m . They differ by a rotation over 45 °. 

Landuyt & Amelinckx, 1969). The G group is then the 
point group of the structure without structural vacan- 
cies, whereas the H group is the point group of the 
structure with ordered vacancies. Similarly the results 
can also be applied to structures resulting from the 
ordering of interstitials. In fact, there is no essential 
difference from the previous case, since it is possible to 
describe this alternatively as the ordering of vacancies 
in a partially filled sublattice. 

The results can also be applied to ordered alloys in 
cases where the disordered form is unknown or non- 
existent, but where the symmetry of the lattice is higher 
than that of the structure, i.e. where the point group 
of the structure is a subgroup of the point group of the 
lattice. This is for instance the case in the 0-phase alloy 
NiMo (see below). 

The results are furthermore also applicable to 
domain structures resulting from small displacements 
of atoms or small deformations, so-called 'displacive 
transformations' like those occurring in ferroelectrics 
and antiferromagnetics; in this case G is the point 
group of the prototype phase and H the point group 
of the ferroelectric or antiferromagnetic phase. 

Examples 

We shall now work out a number of examples following 
the principles set out in the theory. 

1. Let the group G be 4/m 2/m 2/m 
A stereogram of the symmetry elements of this group 

is shown in Fig. 1. It contains 16 elements in ten 
classes 

• • " [ m , m  ], [El [G, G'] . . . . . . . .  , , [ C 2 ,  C2 ], [ m ' , m ' " ] ,  

1 3 [C4, C41 ; [C41 ,  C4"31; [ / ] ;  [C4"2~0"] ;  [C42] . 

Let the subgroup H be 222; it contains four elements 
in four classes: 

[E]; [C21; [C'z']. [C~]. 

Since we have complete classes of G in H, H is in- 
variant. H can adopt two different orientations in G 
differing by a rotation over an angle of 45 ° about the 
fourfold axis; these two orientations are not crystallo- 
graphically equivalent; they are shown in Fig. 2. We 
shall only consider the first since the V.G.G. 's  for the 
second orientation can be derived from those of the 
first by a rotation over 45 ° about the fourfold axis (see 
§ 6). The V.G.G. has to be a subgroup of order 4 of G. 
Several candidates can be found: 222; 4; 4; 2mm; 2/m. 
Only the last group qualifies as a V group because it is 
the only one that can be oriented so as to have no 
element in common with 222. It can in fact occur in two 
orientations for one given orientation of H: they are 
both shown in Fig. 3. The two solutions are V(E, I, C;", 
m"')  and V'(E,L C'2,m'). The groups V and V' are 
related by the twofold rotations C2 and Cz' of H. The 
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rotation CI does not change the Vgroup. It is clear that 
the operations of V belong to four different classes of 
G; they therefore lead to three different interfaces. 

(i) Inversion boundaries; separating domains related 
by the inversion operation L 

(ii) Permutation boundaries; separating domains 
related by the twofold rotation C2, which leads to per- 
mutation of the axes a and b of the orthorhombic 
ordered phase. 

(iii) Permutation inversion boundaries, or twin 
boundaries between domains related by the mirror 
m'= C;1. 

In the 6 phase NiMo these four variants and the 
associated interfaces have been identified (Van Ten- 
deloo & Amelinckx, 1973). Since we have an invariant 
subgroup one can define the factor group. We decom- 
pose G in the following manner: 

G=(E, Cz, C'z', C~) + (I ,m,m", C~-2 m 0 ") 

+ (Cz, C~, Ca, C'2") + (m', CZ',  "~-3t. " ,m .... ) 
= ( E H + I H +  C~H+ m ' H ) =  V.  H .  

We introduce the notation for cosets: 

[El [I] [C~, C s] [C62, C 4] [C~] [C2.,,C2.2,C2,3] 

[C~.1, C~,2, C~,s] [mx, m2,m3] [m],m~,m~] [C6 2, C~"] 
[ c ~ x , c ? ~ [ c ! ~ - o ]  . 

Let the H group be 2/m; it can be built in six different 
ways in G; they are three by three crystallographically 
equivalent. Two different situations may therefore 

I 

C ,,, 

Fig. 3. The two different orientations within G m m 

which the resulting variant generating group 2/m may adopt. 
They differ by a rotation of 90 ° about the fourfold axis. 

Cl=(E,  C2, C'2', C~) C2=(I,m,m '', C~ -2) 
C3=(Cz, C4 a, C], C~") C4=(m, CZ 1, CZ3,m'") .  

Then we can establish the multiplication tables for the 
factor group (Table 1) and for the V group (Table 2). 

Table 1. Multipfication table for the factor group 

6"1 C2 C3 C, 
C~ E -  C~ (22 C3 C4 
Cz C2 E C, Ca 
C3 C3 C4 E C2 
c, c4 c3 c, E 

Table 2. Multiplication table for the V group 

E I C'2 m' 
E E I C'2 m" 
I 1 E m" C', 
C'2 Ci m" E I 
m" m" C~ I E 

It is clear that the two multiplication tables are the 
same if one makes the following mapping: 

CI=E, C2=1, C3=C~, C4=m ' .  

This shows in an example that the V group and the 
factor group are isomorphic. 

2. Let the group G be 6/m2/m2/m; its 24 elements are 
represented in the stereogram of  Fig. 4 

The 24 elements belong to 12 different classes. The de- 
composition into classes is as follows: 

c:2,2 
C 2,~i~ ~.~__~.~¢2,2 

. A  I 7"-,. 

m3"ll ~ ~ mm'2 '1 

m 2 

Fig. 4. Stereographic projection of the pointgroup G m ' 

representing the point group of a disordered hexagonal 
NbTe2 structure. 

J m; 

Fig. 5. Stereogram of the two possible orientations of H(2/m) 
,) in G m ~z differing by a rotation of 30 ° around the six- 

fold axis, 
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arise; for instance either (Fig. 5), 

H[E,I, m3, (72,3] or H'[E,I,m;,C;,3] . 

We shall only treat the first case; the second differs in 
orientation by 30 ° . 

The group does not contain complete classes of G; it is 
therefore not invariant and a factor group does not 
exist. In order to find the V.G.G. we have to look for a 
subgroup of G of order six which has no element in 
common with H. Different point groups qualify: 
6, -6-3/m, 32, 3m; their stereographic projections are 

6 

%: ~i 

C23 

32 3m 

Fig. 6. Stereogram of the four variant generating groups, 6, i~, 

32 and 3m, for G m and H(2/m). 

C'~ 
I! 

C2,2 .8 ~ ~ ~ , , , ~  ~2,1 
\ r .  ' , V ~  

m~ E ~" llC~.~ "Xl ~C~ 

. , 5 = 0  - 

m 2 

4 2 
Fig. 7. Stereographic projection of the pointgroup m 3 m '  

representing the point group of an f.c.c, structure. 

shown in Fig. 6 in the correct orientations with respect 
to G and H. The simplest choice is 6. 

We can than decompose G as follows: 

G=eH+QH+CUJ+C~H+ C~H+C~H= V1. H 

and the V group is: 

V,(E, C~, C~, C~, C~, CD.  

Alternative decompositions are: 

G= EH + m'~H + m'2H + m~H + C~H + C~H 
with 

V2(E,m~,mj, mj, C~, C~) of the type 3m; 

G= EH+ C'2,,H + Ci,2H+ C•,3H+ C~H+ C'~H 

with 
V~(E, Ci i Ci 2, " 2 , . C2,3, C6,C~) of the type 32; 

G = EH+ C [ I H +  C[ZH+ C~3H+ C[4H+ C[SH 

of the type 
with 

V4(E, C ~  1, C ~  2, C ~  3 , C ~  4 , C ~ "  5 )  . 

We thus obtain four different V groups which however 
are all equivalent and produce the same variants. 

The first group V1 has a simple meaning; the six 
variants can be obtained by rotation about the hexag- 
onal axis over angles which are multiples of 60 ° . The 
number of different interfaces is only three however, 
since in the group 6/rn2/m2/m the rotations about the 
sixfold axis belong to three classes (apart from the unit 
element): 

[C62, C64], [C6 ~, C6 ~] and [C~]. 

For the NbTe2 crystal which has a disordered high- 
temperature hexagonal phase (6/rn 2/m 2[m) and is 
ordered monoclinic (2/m), these three different resulting 
boundaries have been called ortho-, meta- and para- 
boundaries (Van Landuyt, Remaut & Amelinckx, 
1970). 

To know the number of translation variants for this 
NbTez structure we have to consider the transforma- 
tion matrix between the disordered hexagonal and the 
ordered monoclinic structures: 

M =  1 
0 

which has a determinant value of 6. Since the mono- 
clinic unit cell is twofold however, one obtains three 
translation variants giving rise to two different anti- 
phase boundaries. These again have been considered 
and used as evidence by Van Landuyt, Remaut & 
Amelinckx (1970). 

3. Let the group G be 4 ~ 2 
m m 

This is the largest point group and contains 48 ele- 
ments divided into ten classes; they are shown in Fig. 7: 
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[E] 
[I] 

[q.., G.2, G.3, G.4, G.5, G.6] 
[mt, m3,m6,ms, ms, mg] [m2,ma, ms] 

l 3 [c,, c,, c?, c?, c';', c:, '~] 
[ c~ ,  c 4  2, c;,"] 

1 t C~, C t C~, C 2 2 2 [C3, l, C3, 2, 3, 3,4, 1, 3,2, C3,3, C3,4] 

[ c ~ , c z ~  c -~  c -~  c -~  c -~  -~  -~  , 3.3, 3.4, 3a ,  3 ,~ ,C~,3 ,C3:1  
[ C i  "1, C ;  -1, C ;  ' -1 ,  C~ "3, C4 -3, C ; ' - 3 ]  , 

We have worked this out explicitly for the first decom- 
position (Table 3). 

Table 3. The decomposition of  G 

H E C4 ~ C~ C~ 
V 
e e C4' c ,  ~ c~ 
CI.1 C 13.1 C2,s C].2 C; 3 
C~., C~.~ C~" C~., c~ 
ml m~ 1712 m3 1114 
m6 m6 C~,4 z C4-1a C3,! 
m9 m9 C~,~ C4"- C~,2 

C; 1 C; 3 a I 

C~ 1 C4 3 a I 
m7 C~- C~,,~ C~..~ 
C'4 '-~ m8 C~I C~..~ 
c? ci'" G., G.~ 
C 2  ,1 3.4 C3.3 C'2 C~.3 
C],3 C3,2 C2 3 G.6 

If the subgroup H is 4/m (as in Ni4Mo) it contains eight 
elements divided into eight classes (Fig. 8): 

[E], [I], [C4~], [C~], [C42], [Cat], [Ci'3], [ a=ms] .  

This subgroup is clearly not invariant in the G group, 
since it does not contain complete classes of G; there- 
fore there is no factor group. The H group can adopt 
three different orientations in G, but they are all crys- 
tallographically equivalent and related by a symmetry 
operation of G. 

To find the V.G.G. we have to look for a group of 
order 6, which is a subgroup of G and which has no 
elements in common with the 4/m group. In the Ni4Mo 
structure these six elements of the V group represent the 
six possible ways of building up the ordered tetragonal 
Ni4Mo from the disordered f.c.c, structure. Three of 
them correspond to the three possible orientations of 
the tetragonal c axis along one of the cube axes of the 
f.c.c, parent; whereas for each of these there are two 
further orientations of the a axis of the tetragonal 
lattice with respect to the cube directions of the parent. 
Different V groups are 3m and 32 with the threefold 
axis oriented along one of the threefold axes of the 
parent point group (Fig. 9). They can therefore be 
oriented in four crystallographically equivalent ways, 
related by symmetry operations of H, so that we have 
only to consider one orientation. To find the number 
of different interfaces we have to look for the number 
of 'classes' of V in G. 

3m= {tEl, [C31. t, C32. t], [ml.m6.mg]} 

32=  {[£1, [C~, t, C~,, d, [Cz, 2, C2,a, C2,61 } • 

So, apart from the unity element, every V group con- 
tains two different classes representing the two inter- 
faces which haze been called (Ruedl, Delavignette & 
Amelinckx, 1968; Fu-Wen Ling & Starke, 1971) 

- antiparallel twins 

- perpendicular twins.  

We can decompose G therefore as follows: 

G= H +  C~, tH+  C~, tH + mlH + m6H+ mgH 

or  . 

q = H +  C~, t H +  C~, ! H +  Cz, 2H+ C2, 3H+ C2, ~H, 

The number of translation variants for each orien- 
tation can be derived from the transformation matrix 
M between the ordered tetragonal cell and the dis- 
ordered f.c.c, unit cell: 

M =  -x2 a 2 
0 0 . 

The determinant value is {-. As the unit cell of the or- 
dered phase is twofold and that of the disordered four- 
fold, i.e. 

2Vo=}4V 
or  

t= V° 5, 
V 

=lgr 

Fig. 8. Stereogram of the subgroup H(4/m) in the exact orienta- 

tion compared to the G group _4_ ~ 2 --° 
m m 

3m 32 

Fig. 9. Stereographic projection of the resulting variant gen- 
erating groups 3 rn and 3 2 in the exact o~ ientation with respect 

to G (4 ~ 2) and H(4/m), 
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one finds five translation variants and four kinds of anti- 
phase boundaries. They have also been discussed by 
Ruedl, Delavignette & Amelinckx (1968), Chakravarti, 
Starke & LeFevre (1970) and Okamota & Thomas 
(1971). 

4. Let the group G as in theprevious example be 4 .j 2 
m m 

of order 48, divided into 10 classes 
Let the subgroup be H =  3m; it contains six elements 

in three classes 

[E], [C~, C]], [ml, m6,m9]. 

Clearly this subgroup is not invariant in G. It can 
adopt four orientations in G, but they are all related by 
symmetry operations of G. 

The V.G.G. in this case is of order 8 and possible 
candidates are 4/m; 422; 42m; 2/m 2/m 2/m; 4mm. The 
last one has to be eliminated because it has a mirror 
plane in common with H. For the 2/m2/m2/m group 
the twofold axes have to be along the fourfold axis of 
the G group; otherwise it would also have common 
elements with H. These conditions occur for the a-GeTe 
alloy which has been studied by Snykers, Delavignette 
& Amelinckx (1972), Goldak, Barrett, Innes & You- 
dells (1966) and Stoemenos & Vincent (1972). 

This and the previous example illustrate clearly 
what we have called in the general theory the reciprocity 
theorem. For the Ni4Mo structure the subgroup H 
was 4/m and one of the V.G.G. was 3m while for GeTe 
where 3m is the point group of the ordered structure, 
one of the V.G.G. was 4/m. 

5. A very simple example is the Ni3Mo ordering 
The G group is 6/m2/m2/m which is of order 24 

(Fig. 4). The elements belong to 12 different classes 
with the following decomposition. 

[El, [i], [C~, C~], [C~, C~l, [C~], [Cs.,, Cs.z, C2.31 

[C~,I, C~,z, C~, 3], [m,,m2,m3], [m~,m~,m~], [C~ ~, Cy s] 

[C6 "2,C64], [C6-3~0"]. 

The point group of the ordered structure is 2/m 2/m 2/m 
which is of order 8, the eight elements are divided into 
eight classes: 

{[E], [I], [C~], [Cz,,], [C~,s], [ml], [ms], [ C ~ 3 - a ]  

so that the H group is Abelian, but notinvariant in G. 
The only possible V.G.G. in this case is 3 which is 

evidently of order 3. The number of classes in G apart 
of the unit element is only one however. The decompo- 
sition of G can be made as follows: 

a = v .  14= ~I+ c~I4 + C~H 

=(E+ I+ C~ + Cs., + C~,2 + m~ + ms +a) 

+(C~ + C~' + C~ + C2,3 + C~.~ + m~ 

+ m3 + C~5)+(C 4 + C64 + C~ + C2,s 

+C~,3+m~+m~+C~l) . 

These three possible orientation variants in Ni3Mo 
have been observed and identified by Ruedl & Ame- 
linckx (1969). 

The number of translation variants follows from the 
transformation matrix M connecting the two primitive 
cells 

M =  2 
0 

and which has a determinant value 4. The number of 
different antiphase boundaries is therefore three. They 
have been studied in detail by Ruedl & Amelinckx 
(1971) and Van Tendeloo, Delavignette, Gevers & 
Amelinckx (1973). 

Thanks are due to Professor Dr R. Gevers, Dr M. 
Bouten and D. Haentjens for useful discussions about 
the typical group-theoretical problems. 

APPENDIX 

In an elaborated table we have systematically con- 
sidered the 32 point groups, looked for all possible 
subgroups H, and if existing, noted the accompanying 
variant generating group V. If the same V.G.G. V can 
be obtained in different orientations, the number of 
ways to do so is noted. If ambiguity is possible or re- 
strictions are to be made, this is also done. A last col- 
umn indicates whether H is an invariant subgroup of 
G or not. For clarity, a stereographic projection of all 
these pointgroups, classified in decreasing order of the 
group is also shown. So, by means of this table it is 
possible if the point groups of the disordered and the 
ordered structure are known to predict for every kind 
of ordering not only the number of different orienta- 
tion variants, but also the way to derive one variant 
from the other. 

For brevity reasons this table is not published here, 
but it can be obtained free of charge from the authors.* 
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Arbitrary combinations of bond lengths, bond angles and torsion angles can be used as generalized 
coordinates for describing molecular models. It is shown how these and the conventional Cartesian or 
fractional unit-cell coordinates can be interconverted. Algorithms are also given for the geometrical 
analysis of rigid structures of links joined by flexible connectors (where only bond lengths are specified). 
Properties of the connectivity matrix, as an alternative complete description of a structure, are developed. 
Several applications of the above procedures are described. 

Introduction 

Given a set of parameters sufficient to define a general, 
unsymmetrical geometrical structure, such as a poly- 
hedron (convex or otherwise), a molecule or a frame- 
work, it is often necessary to calculate certain con- 
sequential geometrical parameters. This calculation is 
often very difficult or tedious when done by exact alge- 
braic means, since the solution of several simultaneous 
quadratic equations is usually necessary. For calcu- 
lations of the energy and other parameters depending 
on pair interactions, for example, all interatomic dis- 
tances must be found. Problems similar to those of 
molecular architecture occur also in real architecture, 
particularly with structures like the geodesic domes 
elaborated by Buckminster Fuller. 

Modern computational facilities, especially those 
providing on-line access by time sharing, are now widely 
available. The procedures to be described show how 
geometrical models, very similar to the widely used 
ball-and-spoke models, but of indefinitely high accur- 
acy, can be realized with a general computer. The pro- 
grams have been written in BASIC and, since a pro- 
gram itself is very easily changed while using it from 
a teletypewriter keyboard, elaborate provisions for 

all eventualities are not necessary. The programs (on 
paper tape) are available from the author. 

A general geometrical program 

The primary or intrinsic parameters of an array of 
N points are the bond distances d~j between pairs of 
points, the bond angles Oijk defined by triplets of 
points and running from 0 to 180 ° and the torsion 
angles (or dihedral angles) ~0~jkz which each require 
four points for identification and which run from - 180 
to 180 °, a sense of rotation being defined in terms of 
a right-hand screw (Appendix). The secondary or de- 
rived parameters of the points are their eoordinate~ 
xi,y~,z~ with respect either to orthogonal Cartesian 
axes or to crystallographic axes. The derived coor- 
dinates change with the axes and are not invariants 
of the structure. Following the Erlangen Programme 
of Klein (1872) wherever possible, quantities which 
are invariants of the structure and thus of physical 
significance are used. In each case 3N-6 parameters 
are needed to describe a structure of N points. Six 
further parameters clamp the grouping in a coordinate 
system. 

Just as the solution of triangles is fundamental 


